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Relations are established between the quantities in the title in form of direct
estimates, instead of measuring the growth of f by its order, type, or some
generalized order. For entire functions of relatively slow growth, a distinct increase
of precision is achieved. Our approach originates in work by Hadamard, Le Roy,
Valiron, and Berg. © 1985 Academic Press, Inc.

1. INTRODUCTION

Let 1 be an entire function with Taylor expansion

Cfj

I(z)= L anzn,
n~O

maximum modulus

(1)

M(r)=M(r,f)=max I/(z)1
1=1 '" r

and maximum term

m(r) = m(r, f) = max lanrnl
nE"

(r:~ 0),

(r ~ 0),

(2)

(3 )

where fJJ = {O, 1,2" .. }. One way of characterizing the growth of an entire
function in terms of its Taylor coefficients is to relate the an with order and
type of f Thus, supposing 0 < p < 00 and 0 ~ t < 00, one has lim SUPn ~ Cfj

n lanl P/
n = tpe if and only if/is of order p and type t. Probably Pringsheim
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GROWTH OF ENTIRE FUNCTIONS 195

[18] was the first to formulate it in this way; see also Valiron [29] and
Boas [4].

Apparently, this characterization is rather coarse, and it is limited to
functions with order p > 0 and type r > 0, thus to functions with M(r)
growing like pvr. rP/

2euP at least. In recent years, there has been' an
increasing interest in refinements and extensions of the concept of order.
These were mainly designed for functions with p = 00, thus for rapidly
increasing functions (see, e.g., [26,22,21,23, 19,25, 11, 1, 16]), but some
of them also apply to more slowly increasing functions, for which the
classical order is zero (e.g., [26, 22, 19, 11, 12, 17]). These papers work
with various kinds of iterated or generalized orders, defined as limits of the
form

r lX(log M(r))
I~}~P -:""'P--=(l-og-r':"")-'-'-

for certain functions IX and p. Using such concepts of an order, somewhat
finer relations between the growth and the Taylor coefficients of an entire
function can be established, but, as compared with a direct @-estimate of
lanl or M(r), these are still rather crude.

As for the relation between the Taylor coefficients and the maximum
term m(r), or that between M(r) and m(r), the situation is similar. For
example, relations of the form

r lX(log M(r)) r lX(log m(r))
I?:s~p P(log r) = I~~s~p --'-:-P~(lo:"'-g-r':"")'--'-

for certain functions IX, Phave been established in [24, 29, 26, 25, 16, 12].
The purpose of the present paper is to set up more precise interrelations

between M(r), m(r), and an, for entire functions of relatively slow growth,
in terms of direct estimates for these quantities. In this respect we refer to
the older papers on the subject, e.g., to those by Hadamard [9] in 1893, Le
Roy [14] in 1900, Valiron [28] in 1914, and also to the theory of
asymptotic expansions which was influenced by them, and to papers by
Wiman [30] in 1914, Bakhoom [2] in 1933, and Hayman [10] in 1956. In
these papers direct estimates of the desired precision were studied, and it
even was attempted to derive asymptotic relations for j(z) itself, instead of
M(r), out of the growth of the an' In the latter respect, the more slowly
increasing functions turned out to have disappointing properties, cr., e.g.,
Le Roy [14, Sect. 6, p. 264], Valiron [28, p. 260], and Mattson [15]. But
when confining attention to M(r) or m(r), it will turn out that just for the
slowly increasing functions the most precise interrelations between growth,
Taylor coeffici,ents, and further characteristics hold (see Theorems 1 and 3

640/43/2-7



196 FREUND AND GORLICH

and Corollary 2). Here we call an entire function slowly increasing if M(r)
increases, essentially, not faster than

{ [
log 2rJO</(0< - 1J}

exp c(rt-1) -
Crt

(4 )

for rt = 2 and an arbitrary c > 0. (The critical value rt = 2 has been found to
be significant also in connection with a conjecture of Erdos.) But also for
more rapidly increasing functions there are direct estimates of M(r), m(r),
and the an' If f increases like (4) with' an rt E (1, 2), for example,
Proposition 2 and Corollary 1 apply, and, for still more rapidly increasing
f, including functions of arbitrary classical order p > 0, Proposition 1 and
Theorem 2 apply. Though in the latter case a necessary and sufficient
characterization of the growth of f in terms of the an is impossible, the
results are still sharper than the limit relations mentioned above.

2. MAXIMUM MODULUS AND TAYLOR COEFFICIENTS

We first prove two propositions for a class of entire functions which
includes all f of order p for some p > 0. Then we restrict ourselves to entire
functions of slow growth in order to obtain a characterization theorem of
the desired precision.

We denote by C2 [x 1, 00) the class of twice continuously differentiable
functions on [Xl' (0) and set, for any gEC2

[XI> (0) with g"(x»O,

A(r) = exp{(g') - I (log r) log r - g( (g') - I (log r)) }. (5)

The following propoSItIon follows from Cauchy's inequality
lanl ~r-n M(r) by substituting r=!expg'(n).

PROPOSITION 1. Let f be an entire function with Taylor series (1) and
maximum modulus (2), and let gEC2

[XI' 00) be such that g'(x)-4oo as
x-4oo and g"(x»Ofor each X~Xl' If

it follows that

M(r) = (()(A(2r)), r-4OO,

n -400, (6)

where o/(x) = exp g(x), X ~ XI'

This estimate is contained, e.g., in [10, p.68], where it has the form
lanl ~M(rn)(rn)-n. It is also contained in [6, p.183], in the form lanl ~
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(r(n)) -n exp(h(r(n))), provided that M(r) = lD(eh(r)), r~ 00, and where r(x)
is the inverse function of xh'(x). This turns into (6) by substituting h(x) =
log A(2x).

We now turn to the reverse implication. Following Berg [3, p. 270], we
define T to be the class of functions g E C2 [x 1, (0) for some x I ~ 0 for
which there exists a function w such that

lim g'(x) = 00,
X __ CXJ

lim w 2(x) g"(X) = 00,
x_ 00

lim g"(X) = 0,
x_ 00

g"(X +Ow(x)) "'g"(X) as x ~ 00, uniformly in °for 101 ~ 1.

Here ""," means that lim<~oo g"(X+ Ow(X))jg"(X) = 1.

PROPOSITION 2. Let f be an entire function with Taylor series (1) satisfy
ing (6) for some qJ such that g(x) = log qJ(x) E r. Then

M(r) = lD([g"((g') -1 (log 2r))] -1/2 A(2r)),

Proof By definition one has

00

M(r) ~ I lanl rn, r> 0,
n=O

and inserting (6) here, it follows that

r~ 00. (7)

M(r) = lD (f (2r t ),
n~O qJ(n)

Since gET, the asymptotic representation

r~ 00.

n~0 ~:~; '" jbc [g"( (g') - 1 (log 2r))] - 1/2 A(2r), r~ 00, (8)

given by Berg [3, Theorem 28.3] implies the assertion.

Remarks. (a) The conclusions of Propositions 1 and 2 are best
possible in the sense that the lD cannot be replaced by 0 in (6) and (7),
respectively. In case qJ grows at least as rapidly as exp(xT

), r ~ 2, this will
be a consequence of Theorem 1 below. For Proposition 2 and general qJ
with gET this is also clear from (8), by choosing f with an = 2njqJ(n).

(b) In connection with Proposition 2 the paper [10] by Hayman
needs to be mentioned. There an asymptotic relation for the an in terms of
M(r) is established (see [10, Theorem I and Corollaries]) which
generalizes Stirling's formula. In general one cannot compare the results of
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[10] with Proposition 2 because our hypothesis (6) does not imply thatfis
an "admissible" function in the sense of [10]. But in the particular case of
f(z)=e z

, where the result of [10] reduces to Stirling's formula, it can be
concluded that (7) is sharp. Indeed, setting g(n) = n(log 2 + log n) +
~ log n - n, (6) is satisfied and, without using (g') - 1 explicitly, it can be seen
that M(r) is asymptotically equal to the right-hand side of (7) then. To
verify that g E r one may choose w(x) = X

3
/
4 in this case.

(c) Precursors of Berg, not mentioned in [3], are Le Roy [14] in
1900 and Valiron [28] in 1914, who formulated roughly the result of
Proposition 2 (see [14, Sect. 5, pp. 261-262], replacing there IX, cp(x), ~ by
log r, g(x) - x log 2, (g') - 1 (log 2r), respectively, and [28, p. 260]).

Now we turn to the case of slowly increasing entire functions. Expressed
in terms of a particular cp(x) of the form cp(x) = exp(cx lX

), c > 0, this means
that the following theorem will cover the cases IX ~ 2, whereas
Propositions 1 and 2 cover the cases IX > 1 and 1< IX < 2, respectively. Let l'
denote the set of functions g E C2 [x 1, 00) for some x 1~ 0, with the proper
ties that

g"(x»O for each X~Xl' and either lim g"(x)= 00,
x_ co

g"'(x) exists for X~Xl and lim g"'(x)(g"(X))-3/2=0,
x-...... c:c

or lim g"(x) = c for some c > O.
x _ oc

THEOREM 1. Let f be an entire function with Taylor series (1), let
cp(x)=eg(x)for some gEl', and let A(r) be defined by (5). The following are
equivalent:

(i) M(r) = (D(A(2r)), r -+ 00,

(ii) lanl = (D(2 njcp(n)), n -+ 00.

Proof The implication (i) =:> (ii) is contained in Proposition 1. For the
converse, consider first the case when lim x ~ 00 g" (x) = c > 0 with c < 00.

Then the proof follows as in Proposition 2, using the second part of [3,
Theorem28.3]. If limx~oog"(x)=oo, it follows again that M(r)=
(D(L:;;",=o (2rtjcp(n)), r -+ 00, and we have to show that the latter sum is
(D(A(2r)) as r -+ 00. To this end we set

h(x, t)=xt-g(t)

and use a result of Sirovich [27, pp. 96--98] (see also Evgrafov [6, p. 18,
(9)] )

00 {2n} 1/2f eh(X,I) dt - eh(x,to(x)) ,

o - h/l(X, to(x))
x -+ 00. (9)
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Here ht/ denotes the second derivative with respect to t, and to(x) =
(g') -I (x). The hypotheses of [27, p.98, case 2] are satisfied since, for
each x> XI' h(x, t) as a function of t has a global maximum at to =
to(x) = (g') - 1 (x), i.e., h,(x, to(x)) = O. Moreover, ht/(x, to(x)) =
-g"((g')-I(X))#O and, observing that (g,)-I(X)-+OO as X-+OO, it
follows by the definition of f that

- lim ht/(x, to(x)) = 00,
x_ co

as well as

lim ht/,(x, to(x) )(htt(x, to(x))) - 3/2 = O.
x~oo

Setting now X r = to(log 2r) and k r = [x r ], where [x r ] denotes the ihtegral
part of X n the sum in question can be majorized as follows:

00 (2rt 00L -)= L exp{h(log2r,n)}
n~O cp(n n~O

~r exp{ h(log 2r, t)} dt + exp{ h(log 2r, k r )}

+ exp{ h(log 2r, k r + I)}

+ foo exp{ h(log 2r, t)} dt
k,+ 1

~ 2 exp{ h(log 2r, x r )} + foo exp{ h(log 2r, t)} dt.
o

Thus, using (9), the definition of h, and (5), we have

M(r) = (I)(A(2r){2 + ~(g"((g')-I (log 2r)))-1/2}), r -+ 00,

and since g"((g') -I (log 2r)) -+ 00, as r -+ 00, assertion (i) follows. This
completes the proof.

In connection with the particular case cp(x)=exp(cx~), c>O, of
Theorem 1 we mention the papers by Bakhoom [2] and Le Roy [14].
Theorem 1 then states that, for each IX ~ 2,

( { (
10 2r)~/(~- I)})

M(r)=(I) exp C(IX-l) ;IX '

holds if and only if

r -+ 00,

n -+ 00.
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In [2, 14] the asymptotic expansion (9) is given for this cp, in the cases
IX E N and IX> 2, respectively.

3. MAXIMUM TERM AND TAYLOR COEFFICIENTS

A satisfactory characterization of m(r) in terms of the Taylor coefficients
holds for a large class of entire functions, including those of order p > 0
and type r ~ 0 (choose cp(x) =exp g(x), g(x) = (xlp) log(x2 PIper) below).

THEOREM 2. Let f be an entire function with Taylor series (1) and
maximum term (3), and let g, cp, A(r) be given as in Proposition 1. Condition
(6) is equivalent to

m(r) = (()(A(2r)), r ---+ 00. (10)

Proof Let (6) be satisfied, so that for each r> 0, n ~ no,

where no, M are constants. For fixed r, the maximum over x of the
function (2rr/cp(x) is attained at x = (g') -1 (log 2r), and has value A(2r),
provided that (g') - 1 (log 2r) > Xl' Therefore

for each r larger than some roo Choosing r 1 > ro large enough, so that
lanornol ~max{lanrnl; O~n<no} for each r>r\> it follows that also
m(r)~MA(2r), r>r 1• Conversely, (10) implies that

(r> ro), (11)

where ro, M are constants. Choosing r = !eg'(n) for some n EN in (11), we
have r> r0 for n large enough (since g' (x) ---+ 00 as x -+ 00), and (6) follows.

4. MAXIMUM MODULUS AND MAXIMUM TERM

In view of Cauchy's inequality, the estimate m(r) ~ M(r) is iJ;llmediate.
Estimates in the inverse direction have been studied by, among others,
Valiron [29, pp. 32-34], who proved for entire functions f of order p the
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inequality M(r) < m(r) rPH, r> r., where I: > 0 is arbitrary, and by Wiman
[30, pp. 306, 315], who proved e.g., that M(r) < m(r)(log m(r))1/2+E holds
for infinitely many r, provided that f is an entire transcendental function
and e > 0, and that M(r) < PI.j'2;m(r)(log m(r))1/2, r> ro, where PI> P,
provided f is of order p. The latter inequality is a special case of
Corollary 1 below (choosing g(x) = (xlp) log(x2P/ pet) there and using that
then m(r) = (D(e"P), r --+ 00, in view of Theorem 2). Indeed, both then imply

that M(r) = (D(P0 rPI2e"p), r --+ 00, for an entire f of order P> 0 and type
t>O.

COROLLARY l. Let f be an entire function with Taylor series (1), satisfy
ing m(r) = (D(A(2r)), r --+ 00, with A(r) defined by (5), for some q>(x) =
expg(x), gET. Then

M(r) = (D([g"((g')~ I (log 2r))] ~ 1/2 A(2r)), r --+ 00.

(12)

This follows by combining Theorem 2 with Proposition 2. The next
corollary, which is a consequence of Theorems 2 and I, is concerned with
functions of slow growth only.

COROLLARY 2. Let f be given as in Theorem 1. The following are
equivalent:

(i) m(r)=(D(A(2r)), r--+oo,

(ii) M(r) = (D(A(2r)), r --+ 00.

For further relations between m(r) and M(r) compare Rosenbloom [20]
and Kovari [13]. In connection with Corollary 2, it is also interesting to
compare the papers of Clunie and Hayman [5] and Gray and Shah [8]
which deal with a conjecture of Erdos. Denoting by a(f) and P(f) the
lim sup and lim inf of m(r)/M(r), respectively, as r --+ 00, the conjecture was
that there can occur only the two cases a(f) > P(f) or a(f) =P(f) =O. In
[5, 8] this is confirmed for certain classes of functions, and disproved for
others. In particular, it was shown in [8] that, given any f/J with
lim r ~ 00 f/J(r) = 00, the class of functions f with property

r log m(r) 0
r ~n;, f/J(r )(log r)2

always contains an f for which a(f) = P(f) = 0 and

I
. log m(r)
1m 2 = 00.
r~ 00 (log r)

This implies that for such f an equivalence like Corollary 2 cannot hold,
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and hence that the hypotheses of Corollary 2 cannot be relaxed essentially.
Indeed, choosing q>(x) = exp(cxO:) there, our hypotheses exclude the case
IX < 2. In terms of the estimate m(r) = CD(A(r)) this means that we exclude
functions f for which m(r) increases faster than exp{a(log rf} for some
constant a> O. Condition (12) expresses just the same hypothesis.

5. CHARACTERIZAnON THEOREM FOR SLOWLY INCREASING FUNCTIONS

Summarizing the results for slowly increasing functions, and combining
them with the characterizations in [7J, we have the following theorem.
Here En [f, C[ - 1, 1JJ denotes the error of best uniform approximation by
algebraic polynomials on the interval [-1,1], Ck(f) are the Fourier
Chebychev coefficients of f, and A(r) is defined by (5).

THEOREM 3. Let f be an entire function with Taylor series (1), and let
q>(x) = eg(x) for some gEt. The following assertions are equivalent:

(i) En[f, C[ -1,1]] = CD(I/q>(n + 1)), n -+cD,

(ii) II f (')11 C[ _ 1,11 = (9(2'r!/q>(r)), r~ 00,

(iii) I f(r}(O)1 = (9(2'r!/q>(r)), r -> 00,

(iv) !ck(f)1 = CD( 1/q>(k)), k ~ 00,

(v) M(r) =CD(A(2r)), r~ 00,

(vi) m(r) = (9(A(2r)), r~ 00.
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